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Foreword

By Professor Ross McKitrick

Economists have put a lot of effort over the years into devising and running elaborate
modelling systems to generate forecasts ofmacroeconomic indicators, financial mar-
kets, resource prices, and other key economic quantities. But the repeated failures
of such models to generate accurate predictions has taught the profession a healthy
scepticism about the ability of large structural models, regardless of how complex, to
provide reliable forecasts. A particularly acute challenge arosewhen relatively simple
statistical time-series methods began yielding better forecasts than massive system-
simulation models.

It is difficult not to wonder whether a parallel with modern climatology will arise.
Like theeconomy, the climate is adeeply complex system thatdefies simple represen-
tation. Giant computer modelling systems have been developed to try and simulate
its dynamics, but their reliability as forecasting tools is proving to be very weak. The
problem is that many important policy decisions are based on climate-model projec-
tions of the future, on the assumption that they can be treated as forecasts. If they are
not valid for this purpose, we need to know whether there are alternative methods
that are.

In this insightful essay, Terence Mills explains how statistical time-series forecast-
ing methods can be applied to climatic processes. The question has direct bearing
on policy issues since it provides an independent check on the climate-model pro-
jections that underpin calculations of the long-term social costs of greenhouse gas
emissions. In this regard, his conclusion that statistical forecasting methods do not
corroborate the upward trends seen in climatemodel projections is highly important
and needs to be taken into consideration.

As one of the leading contributors to the academic literature on this subject, Pro-
fessor Mills writes with great authority, yet he is able to make the technical material
accessible to a wide audience. While the details may seem quite mathematical and
abstract, the question addressed in this report is of great practical importance not
only for improving the science of climate forecasting, but also for the development
of sound long-term climate policy.

Ross McKitrick
Guelph, January 2016

Ross McKitrick is Professor of Economics, University of Guelph and Research Chair in En-
ergy, Ecology and Prosperity at the Frontier Centre for Public Policy.
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Summary

The analysis and interpretation of temperature data is clearly of central importance
to debates about anthropogenic global warming (AGW). Climatologists currently rely
on large-scalegeneral circulationmodels toproject temperature trendsover the com-
ing years and decades. Economists used to rely on large-scale macroeconomic mod-
els for forecasting, but in the 1970s an increasing divergence between models and
reality led practitioners to move away from such macro modelling in favour of rela-
tively simple statistical time-series forecasting tools, which were proving to be more
accurate.

In a possible parallel, recent years have seen growing interest in the application of
statistical and econometricmethods to climatology. This report provides an explana-
tionof the fundamental buildingblocks of so-called ‘ARIMA’models, which arewidely
used for forecasting economic and financial time series. It then shows how they, and
various extensions, can be applied to climatological data. An emphasis throughout
is that many different forms of a model might be fitted to the same data set, with
each one implying different forecasts or uncertainty levels, so readers should under-
stand the intuition behind themodellingmethods. Model selection by the researcher
needs to be based on objective grounds.

ARIMA models are fitted to three representative data sets: the HADCRUT4 global
surface series, the RSS global lower troposphere series and the Central England Tem-
perature (CET) series. A clear finding presents itself for the two global temperature
series. Irrespective of the model fitted, forecasts do not contain any trend, with long-
horizon forecasts being flat, albeit with rather large measures of imprecision even
from models in which uncertainty is bounded. This is a consequence of two inter-
acting features of the fitted models: the inability to isolate a significant drift or trend
parameter and the large amount of overall noise in theobservations themselves com-
pared to the fitted ‘signals’. The CET exhibits season-specific trends, with evidence of
long-term warming in the winter months but not in the summer.
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1 Introduction

The analysis and interpretation of temperature data is clearly of central importance
to debates about anthropological global warming (AGW) and climate change in gen-
eral. For the purpose of projecting future climate change, scientists and policymak-
ers rely heavily on large-scale ocean–atmosphere general circulation models, which
have grown in size and complexity over recent decades without necessarily becom-
ing more reliable at forecasting. The field of economics spent the post-war decades
developing computerisedmodels of the economy that also grew to considerable size
and complexity, but by the late 1970s two uncomfortable truths had been realised.
First, thesemodels produced generally poor forecasts, and addingmore equations or
numerical detail did not seem to fix this. Second, relatively simple statistical models
that had no obvious basis in economic theory were proving much more reliable at
forecasting. It took many years for economists to rationalise statistical forecasting by
working out its structural connections to this theory. But before this had happened,
economic practitioners were already relying on thesemodels simply because of their
relative success.

Is there a parallel with climatology? In recent years, statisticians and econome-
tricians have begun applying the tools of statistical forecasting to climate datasets.
As these exercises have become more and more successful, there is a corresponding
concern that such models either have no basis in climatological theory, or may even
seem to contradict it. In this report we focus on forecasting models in general, and
their application to climate data in particular, while leaving aside the potentially in-
teresting question of how such models might or might not be reconciled with the
physical theory underpinning climate models.

Data organised as evenly-spaced observations over time are called ‘time series’.
The analysis of time series has a long and distinguished history, beginning with de-
scriptive examinations but withmajor technical advances occurring in the early years
of the 20th century, following quickly on from the development of the concept of
correlation.1 The publication of the first edition of George Box and Gwilym Jenk-
ins’ famous book Time Series Analysis: Forecasting and Control in 1970 brought the
techniques formodelling and forecasting time series to a wide audience. Their meth-
ods have since been extended, refined and applied to many disciplines, notably eco-
nomics and finance, where they provide the foundations for time series economet-
rics.2 Although some of the fundamental developments in time series were made
using meteorological data, it is notable that many contributors to the debates con-
cerningAGWand climate change seemunaware of this corpus of theory andpractice,
although contributions by time series econometricians have now begun to appear,
albeit with rather limited influence on such debate.3,4

Themainpurposeof this report is to set out a framework that encompasses awide
range of models for describing the evolution of an individual time series. All such
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models decompose the data into random and deterministic components, and then
use these components to generate forecasts of future observations, accompanied by
measures of uncertainty. A central theme of the report is that the choice ofmodel has
an important impact on the form of the forecasts and on the behaviour of forecast
uncertainty, particularly as the forecast horizon increases. But since some models fit
the data better than others, we are able to provide some guidance about which sets
of forecasts are more likely to be accurate. The framework is illustrated using three
readily available and widely used temperature series. These are:

• the HADCRUT4 global land and sea surface anomaly series, available monthly
from January 1850

• the Remote Sensing System (RSS) lower troposphere series, available monthly
from January 1979

• Central England temperatures (CET), available monthly from January 1659.
In each case the series are examined up to December 2014.5

All computations are performed using commercially available software, so that
the analyses should be easily replicable, and hence could be refined and extended by
anyone familiar with such software. Indeed, it is taken to be the very essence of sta-
tistical modelling that these models, and hence the forecasts computed using them,
should be subjected to ‘severe testing’ and subsequently replaced by superior mod-
els if found wanting in any aspect.

2 Basic time-series modelling

The ARIMA framework

Wewill develop several popular time-seriesmodels in some detail, with the technical
details provided in the Appendix. Their various implications can best be understood
by starting with their underlying structures. The basic model begins with a tempera-
ture time series xt observed over the period t = 1, 2, . . . , T . Our aim is to forecast the
values of xt at future times T + 1, T + 2, . . . etc.6 The simplest decomposition breaks
xt down into the sum of a deterministic term (the level) and a random term (noise):

xt = μt + εt (1)

where μt and εt are the level and noise components, respectively. These are typically
assumed to be independent of (or uncorrelated with) each other.

Two essential points about statistical forecasting methods are as follows.

1. The deterministic level component depends only on time and upon invariant
parameters that can be estimated from the data. Once they have been esti-
mated, μt can be forecast precisely for any period in the future. The validity of
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the forecast obviously depends on the validity of the equation used and the
quality of the parameter estimates.

2. The random component, if identified correctly, averages out to zero over time
andhas a stable variance, somodel (1)will yield a forecast consistingof a central
tendency with uncertainty bounds.7 The width of the uncertainty bounds will
depend upon the behaviour of εt .

The basic form of the deterministic component typically consists of a constant
term, which we will call μ0 , and a trend, μ1 t , although with additional parameters
we can also allow for breaks and jumps in the trend, as well as recurring seasonal
patterns. A ‘non-random’ model for xt could then be defined as

xt = μ0+μ1 t

If we knew, or could estimate, the values of the μ coefficients we would then be able
to forecast future values of xt perfectly. However, this would not be a very sensible
model because, no matter how good our coefficient estimates are, the model would
almost certainly never perfectly match the data, since there will always be random
noise terms. Nowsuppose, for thepurposeof anexample, that all our observationson
xt take the same value. Then we could write down two models that fit the observed
data equally well:

xt = μ0+ at

and

xt = xt−1+ at (2)

Here at denotes a sequence of zero-mean, constant-variance, independent errors, or
‘innovations’, typically referred to as ‘white noise’. As all values of xt are the same in
the observed sample, all the ats in this sample will be zero. Although both models
will fit the observed data equally well, they imply different things about the future.
If, for some reason, a future value of at is non-zero then equation (2) implies that the
level of xt at this time would shift by the amount at to a new level and this change
would be permanent. In contrast, the firstmodel predicts that xt will always return to
its original value since the shift lasts for just a single period: the changewould thus be
transitory. Hence it is clear why the form of the model can imply different forecasts.
In general we expect to be able to determine which form is likelier from its fit to the
historical data.

A basic form of the noise component of the model comprises two processes: an
autoregression and a moving average.

• In the autoregression xt is determined by one or more past values of xt . If xt

is dependent on only one lag, xt−1, it is an autoregression of order 1, denoted

3



AR(1). If it depends on two lags, xt−1 and xt−2, then this is an autoregression of
order 2, denoted AR(2), etc.

• The second process is themoving average of current and past white noise error
terms. An example is εt = at+θ1at−1+θ2at−2 , whichwe call anMA(2) process,
and so forth.

Supposewe construct a time-seriesmodel using the above combination of build-
ing blocks. First, if we are interested inmodelling the deviations around themean our
basic model will be:

xt = μ0+ (AR and MA terms)

It tidies the notation a bit to define the deviation x̂ t = xt − μ0 so that we can write
out a model as, say,

x̂ t = β1 x̂ t−1+ β2 x̂ t−2+ at + θ1at−1+ θ2at−2+ θ3at−3 (3)

The right-hand side is seen to comprise an AR(2) process along with an MA(3) pro-
cess. Models such as these are known as ‘autoregressive-moving average’ processes
or ARMA(p, q ) for short, where p is the order of the AR process and q is the order of
the MA process. Thus equation (3) is an ARMA(2, 3) process.

Much of time-series analysis concerns estimating the coefficients of ARMA mod-
els. Since there are p× q possible forms of equation (3) there can be many potential
models to choose from, so statistical techniques and algorithms have been devel-
oped to search through and identify the optimal form. In general, the more parame-
ters that get added to a model the less precisely each one is estimated, so the algo-
rithms have to trade-off the quality of fit with the benefit of parsimony.

We can add a trend term by changing the basic model to:

xt = μ0+μ1 t + (AR and MA terms)

so that now x̂ t = xt−μ0−μ1 t . In the sameway we can add shift terms and breaks in
the trend, so, for instance, the trend might be μ1 up to some year and μ2 thereafter.
We can also add recurring seasonal patterns, or make the trend nonlinear by com-
bining the linear term with a smoothly varying function of time. Once again, there
are many possible functions that can be used, and computational methods can be
employed to choose the most appropriate.

Equation (2), xt = xt−1+ at , is a special case of an autoregressive process known
as a ‘random walk’. If we add a constant term, so that now xt = δ + xt−1 + at , we
have a random walk with drift, where δ is the drift parameter. We will introduce the
symbol ∇ to denote the difference between the current value and the last period’s
value, or the first difference. So ∇xt = xt − xt−1. Then the random walk with drift
can be written as xt − xt−1 = ∇xt = δ + at . Models which contain differences of
xt are often referred to as ‘integrated processes’. If first differences are used then the
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process will be integrated of order one, denoted I(1). If second differences are used,
in other words,

∇2 xt = (xt − xt−1)− (xt−1− xt−2) = xt − 2xt−1+ xt−2

then the process will be I(2). Thus the general I(1) process will be of the form

∇xt = (AR and MA terms)

For example:

∇xt = β1∇xt−1+ β2∇xt−2+ at + θ1at−1+ θ2at−2+ θ3at−3

is an autoregressive-integrated-moving average model of orders 2, 1 and 3, in other
word ARIMA (2, 1, 3).

Stationarity

There remains one critically important concept to explain, namely stationarity (and,
by implication, non-stationarity). A stationary process is one that, while subject to
random shocks, always returns to its mean value. Also, the variance of a stationary
process remains constant over time and the correlation between any two observa-
tions spaced k intervals apart remains constant as well. Consider the simple example
of an AR(1) process:

xt = θ xt−1+ at

Substituting θ xt−2 + at−1 for xt−1 gives xt = θ
2 xt−2 + at + θat−1. By repeated

substitution k times we obtain

xt = θ
k xt−k + at + θat−1+ θ

2at−2+ . . . + θ kat−k

If θ is bounded between −1 and +1 then, as k goes to infinity, θ k must go to zero so
the first term will disappear leaving only at and its lags, each of which has a mean of
zero. So the expected value of xt will go to zero as well. The variance of xt can then
be shown to be σ2

a/(1− θ
2), where σ2

a is the variance of at , and this will be constant
regardless of t .

If θ = 1, so that we have a random walk process, then the series becomes non-
stationary and two important things change. First, as k gets larger, xt will no longer
return to zero, but will take the value xt = x0+

∑t−1
j=0 at− j , in other words the starting

value x0 plus the sumof all random shocks since then. Second, the variance increases
with time and will eventually go to infinity.

But it is also clear that while xt is I(1) and therefore nonstationary, its first differ-
ence is I(0) and is said to be ‘difference stationary’. Alternatively, if xt is nonstationary
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but the deviations around a linear trend are stationary, we say that xt is ‘trend sta-
tionary’. The statistical properties of nonstationary series are far more complex than
stationary series, so an important part of the model-fitting process involves trying to
isolate a stationary random process.

If we end up with a model of the form

∇xt = δ+AR and MA terms

then this is an I(1) process with drift. The h-period ahead forecast, when h is large,
is that xt will change by hδ units, since the expected values of the AR and MA com-
ponents will tend to zero. If δ is zero, then the best forecast is that xt will drift up or
down by random amounts but will not trend in any particular direction.

This section has presented some basic time-series modelling concepts that un-
derpin statistical forecasting. The Appendix restates all the same material in formal
terms that will be familiar to specialists. We now turn to empirical results from apply-
ing these tools to temperature data.

3 Fitting basic models to temperature series

HADCRUT4

For this series standard identification techniques (see Appendix) suggested that an
ARIMA (0, 1, 3) process is the most suitable model within this class, being estimated
as8

∇xt = 0.0005
(0.0008)

+ at − 0.520
(0.022)

at−1− 0.080
(0.025)

at−2− 0.123
(0.022)

at−3 σ̂a = 0.1234

The standard errors shown in parentheses reveal that the constant, estimated to be
just 0.0005, is insignificantly different from zero. Omitting this from themodel leaves
the moving average coefficients unaltered and reduces the estimate of the innova-
tion standard error σa marginally to 0.1233. The model can thus be expressed in the
form

xt = xt−1+ εt

where
εt = at − 0.520at−1− 0.080at−2− 0.123at−3

with the implication that temperatures are non-stationary – I(1) – but without any
drift upwards (or, indeed, downwards), so they will wander widely from their initial
position x0. The monthly fluctuations in temperatures are negatively correlated with
changes up to three months apart, but uncorrelated with changes more than three
months apart.
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Wementioned above that a trend broken into different segments can also be fit-
ted. As an example of a segmented trend, a model with regimes with breaks at De-
cember 1919, December 1944, December 1975 and December 2001 was also fitted
to HADCRUT4.9 We denote the trend adjustment in segment i as St(i) so the trend
itself is the sum of the initial trend plus the adjustment terms up to that point. With
εt specified as an AR(4) process, this model is estimated to be:

xt = −0.288
(0.029)

− 0.000096
(0.000055)

t + 0.00136
(0.00018)

St(1)− 0.00157
(0.00025)

St(2)

+0.00201
(0.00028)

St(3)− 0.00106
(0.00063)

St(4) + ε

ε = 0.458
(0.022)

εt−1+ 0.158
(0.025)

εt−2+ 0.028
(0.025)

εt−3+ 0.074
(0.022)

εt−4+ at σ̂a = 0.1210

Note that the noise component is certainly stationary, with the largest root of the
autoregressive polynomial being 0.82. The evolving slopes of the trend function are
thus estimated to be as shown in Table 1 (see equation (A10) of the Appendix for the
definition of the δ coefficients).

Table 1: HADCRUT4 regimes

Regime Period Estimated regime slope t-ratio

1 1850–1919 β̂1 = −0.00010 (0.00006) 1.74
2 1920–1944 β̂1+ δ̂1 = 0.00127 (0.00014) 8.80
3 1945–1975 β̂1+ δ̂1+ δ̂2 = −0.00030 (0.00013) 2.28
4 1976–2001 β̂1+ δ̂1+ δ̂2+ δ̂3 = −0.00170 (0.00018) 9.61
5 2002–2014 β̂1+ δ̂1+ δ̂2+ δ̂3+ δ̂4 = −0.00064 (0.00051) 1.26

These slopes give the monthly change in temperature in each regime. Scaling up
to decadal changes by multiplying by 120 gives 0.01◦C, 0.15◦C, 0.04◦C, 0.20◦C and
0.08◦C respectively for the five regimes. It is seen, however, that the slope of the final
regime is insignificantly different from zero and imposing this restriction does not
alter the estimate of σa and barely alters the estimates of the slopes. Figure 1 shows
the HADCRUT4 series with this restricted segmented trend imposed.

RSS

For this series standard identification techniques suggested that an ARIMA (0, 1, 1)
process is the most suitable model within this class, being estimated to be:

∇xt = at − 0.410
(0.044)

at−1 σ̂a = 0.1126
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Figure 1: HADCRUT4 with segmented trend superimposed

Monthly data, January 1850–December 2014

This can be expressed as

xt = xt−1+ εt

where

εt = at − 0.410at−1

As an example of a segmented trend, a model with m = 2 regimes with breaks
at December 1997 and October 1998 was also fitted. With εt specified as an AR(2)
process, this model is estimated to be:

xt = −0.126
(0.076)

+ 0.00095
(0.00055)

�
t − St(2)

�
+ 0.138
(0.083)

�
St(1)− St(2)

�
+ εt

εt = 0.550
(0.047)

εt−1+ 0.247
(0.047)

εt−2+ at σ̂ = 0.1100

In this model the restriction β +δ1+δ2 = 0 has been imposed, with a test of this
restriction producing an insignificant statistic, since the unrestricted sum is −0.0001
with standard error 0.0006. Thus the evolving slopes of the trend function are esti-
mated to be as shown in Table 2.

This trend is shown superimposed on the RSS series in Figure 2. An almost iden-
tical trend function is obtained by fitting a smooth transition with γ=0.7 and the
midpoint of the transition being April 1997.
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Table 2: RSS regimes

Regime Period Estimated regime slope t-ratio

1 Jan 1979–Dec 1997 β̂1 = −0.00095 (0.00055) 1.72
2 Jan 1998–Oct 1999 β̂1+ δ̂1 = −0.0148 (0.0079) 1.88
3 Nov 1999–Dec 2014 β̂1+ δ̂1+ δ̂2 = 0 −0.11
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0.0

0.2

0.4

0.6

0.8

1.0

1980 1985 1990 1995 2000 2005 2010

Figure 2: RSS with segmented trend superimposed

Monthly data, January 1979–December 2014

4 Seasonal extensions of the basic model

The temperature series investigated so far are both ‘global’ and hence contain no sea-
sonal fluctuations. To deal with a regional temperature series, whose evolution will
necessarily include a seasonal fluctuation, the level and noise components of equa-
tion (1) need to be extended. We will use s to denote the seasonal period: for tem-
peratures recorded at quarterly intervals, s = 4, while for monthly data, s = 12. The
model for μt may be extended to:

xt =
s∑

i=1

(μ0+μ1 t)di(t) + ARIMA terms

The di(t) are seasonal ‘dummy’ variables defined as:
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di(t) =

(
1 if t = interval i

0 otherwise
i = 1, . . . , s

The level model thus allows for a different deterministic (linear) trend in each season.
Extensions to nonlinear seasonal trends, or breaking and segmented seasonal trends,
are clearly possible if thought desirable. Further details, including stochastic seasonal
patterns and seasonal randomwalks, are discussed in the Appendix.

5 Fitting seasonal models to temperature series

Central England Temperature Record

The monthly CET has a clear seasonal pattern, as is shown in Figure 3. The follow-
ing, rather simple, specification of themodel of equations (A13) and (A14) is found to
produce an adequate fit to the series:

xt =
12∑

i=1

(μ0+μ1 t)di(t) + εt (4)

where the estimates of the seasonal trend components are shown in Table 3 and the
noise component is given by the AR(2) process10

εt = 0.261
(0.015)

εt−1+ 0.080
(0.015)

εt−2+ at σ̂a = 1.3211

The seasonality in thismodel contains no randomcomponent and thus is completely
deterministic, with the seasonal factors for eachmonth remaining constant through-
out the entire period. Each month does, however, evolve as a different linear trend.
Table 3 expresses these trends at centennial rates: the smallest trend is seen to be
for June, which has increased by an insignificant 0.001◦C each century. The largest
is for January, with a centennial increase of 0.04◦C. These trend increases over the
entire 350 or so years are illustrated in Figure 4, which shows the fitted monthly tem-
peratures for 1659 and 2014: the January temperature has increased from 2.38◦C to
4.11◦C, i.e. by 1.73◦C, while the June temperature has only increased from 14.31◦C to
14.34◦C, i.e. by just 0.03◦C. It is clear that winters have become progressively warmer
but that summers have remainedmuch the same over the entire period, the seasonal
increases beingwinter 1.35◦C, spring 0.97◦C, summer 0.34◦Candautumn1.11◦C,with
an overall average increase of 0.94◦C. An alternative estimation yielded a driftless
random walk with monthly dummies. This model thus differs from the ARIMA-plus-
deterministic-seasonal-trendsmodelby containingno trendcomponentwhatsoever.
The estimated level is shown superimposed on the observed CET series in Figure 3:
the mean level for 1659 is 9.02◦C, that for 2014 is 10.41◦C.
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Figure 3: CET with estimated structural level superimposed

Monthly data in ◦C, January 1659–December 2014
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Table 3: Estimates of equation (4) for the CET monthly series

i α̂i 100× β̂i

1 2.382 0.0406
2 3.338 0.0248
3 4.591 0.0346
4 7.468 0.0218
5 10.969 0.0117
6 14.307 0.0008
7 15.720 0.0118
8 15.388 0.0115
9 12.972 0.0172
10 9.042 0.0313
11 5.424 0.0299
12 3.447 0.0097

Standard error 0.147 0.0060

6 Forecasting from time series models

Having fitted a model of the type discussed above to an observed series, forecasts of
future observations, along withmeasures of forecast uncertainty, may then be calcu-
lated. It is very important to understand, however, that the type of model that has
been fitted will both determine the forecast and its associated uncertainty.

The fitted model expresses xt as a function of past observations (xt−1,xt−2, etc.),
plus current andpast randomdisturbances (at , at−1, at−2, etc.). The technique forgen-
erating forecasts involves setting the forecasts of the disturbances to their expected
value of zero and then using the estimated model to generate xt+1 as a function of
xt , xt−1, etc. Then xt+2 is generated as a function of the forecast xt+1 as well as xt ,
xt−1 and so forth. This continues recursively as far into the future as we desire to fore-
cast. Once the forecast horizon exceeds the dimension of the AR process the forecast
will be entirely a function of earlier forecast values. For this reason we expect the un-
certainty of the forecast to increase as the horizon extends into the future, though it
does not keep growing unless the process is non-stationary.

If the process is stationary and there is no trend, the forecast of xt will always
converge on the sample mean μ0. How quickly or slowly it converges will depend
on the coefficients of the AR process. The mathematics involves computing what are
called the ‘roots of the characteristic equation’ associated with the autogression. The
higher the value of the largest root of the characteristic equation associated with the
autoregression, the more slowly is the return to the mean.

12
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Figure 4: Fitted monthly CET temperatures for 1659 and 2014.

If the process is stationary around a linear trend, the same concept applies but
this time the forecast converges to the trend line μ0 + μ1 t . Again, the roots of the
characteristic equation of the AR process will determine how quick the convergence
is.

If the process is a randomwalk, the optimal forecast of any future value is the last
observed value of the series.

The variance of the forecast depends in a complex way on the coefficients of the
ARIMA model. The mathematical details are in the Appendix. If the process is sta-
tionary the variance of the forecast converges to a finite maximum value. In the case
of a nonstationary process, such as an I(1) or I(2), the forecast variance grows in an
unlimited way as the horizon extends into the future.

7 Forecasting temperature series

HADCRUT4

Figure 5 shows the last four years of the HADCRUT4 series and forecasts out to end-
2020, accompanied by 95% forecast intervals calculated as:

fT,h± 1.96
p

V (eT,h)
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for origin T =December 2014. The forecasts for January and February 2015 are 0.588
and 0.593, respectively, before falling to 0.582 for all longer horizons. The forecast
intervals begin at (0.346, 0.830) and then increase in width to (−0.045,1.209) by end-
2020, reflecting themore than doubling of the forecast error standard deviation from
0.123 to 0.320 over this period.

Figure 6 shows analogous forecasts from the segmented trend model with the
last regime restricted to having a slope of zero, given that the estimated slope for this
regime is insignificantly different from this value. Here the stationary autoregressive
component has a short-term influence on the forecasts (the January 2015 forecast
is 0.557), before dying away to allow the forecasts to reach and maintain a level of
0.463 by mid-2017, these being accompanied by forecast error standard deviations
that reach a maximum of 0.157 at around the same time, so that the uncertainty in
the forecasts is eventuallyboundedat 0.463±0.157, in contrast to theARIMA forecasts
shown in Figure 5, in which the forecasts are both higher and much less precise.

Given that the within-sample fits of the two models are much the same, these
examples effectively illustrate howalternativemodels canproducedifferent forecasts
having different levels of precision.

RSS

Figures 7 and 8 show forecasts out to December 2020 for RSS computed using the
ARIMA and segmented trendmodels respectively. While the forecasts are rather sim-
ilar, being 0.269 for all horizons for the ARIMA (0, 1, 1) and converging to 0.237 by
mid-2017 for the segmented trend, there are large differences in forecast uncertainty,
even though the within-sample fits are again much the same. The non-stationary
ARIMA model has a one-step ahead 95% forecast interval of (0.048, 0.490) , which
then stretches to a very wide (−0.850, 1.388) by end-2020 as the forecast error stan-
dard deviation increases fivefold from 0.113 to 0.571. By contrast, the stationary devi-
ations from the segmented trendmodel produce an almost identical one-step-ahead
95% interval of (0.048, 0.481), but which by end-2020 has widened only to (−0.097,
0.571) as the forecast error standard deviation increases from 0.110 to just 0.170.

CET

Forecasts from the seasonal model for CET are shown in Figure 9. The pronounced,
but fixed, seasonal pattern is clearly observed, as is the absence of any pronounced
trend in the overall level of CET: the forecasts for January and July 2016 (after the
effects of the transitory AR(2) noise have decayed away) are 4.12◦C and 16.22◦C,while
the analogous forecasts for 2020 are 4.14◦Cand16.23◦C. The forecast uncertainty also
remains bounded, with the forecast error standard deviation increasing from 1.33 to

14
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Figure 5: HADCRUT4 and forecasts from fitted ARIMA (0, 1, 3)model

Monthly data, January 2011–December 2014 with forecasts out to December 2020
accompanied by 95% forecast intervals.
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Figure 6: HADCRUT4 and forecasts from fitted segmented trend model

Monthly data, January 2011–December 2014 with forecasts out to December 2020
accompanied by 95% forecast intervals.
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Figure 7: RSS and forecasts from fitted ARIMA (0, 1, 1)model

Monthly data, January 2011–December 2014 with forecasts out to December 2020
accompanied by 95% forecast intervals.
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Figure 8: RSS and forecasts from fitted segmented trend model

Monthly data, January 2011–December 2014 with forecasts out to December 2020
accompanied by 95% forecast intervals.
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just 1.39 over the forecast period. The structural model with fixed seasonal pattern
produces almost identical forecasts and measures of forecast error uncertainty.

8 Discussion

The central aim of this report is to emphasise that, while statistical forecasting ap-
pears highly applicable to climate data, the choice of which stochastic model to fit
to an observed time series largely determines the properties of forecasts of future
observations and of measures of the associated forecast uncertainty, particularly as
the forecast horizon increases. The importance of this result is emphasised when, as
in the examples presented above, alternative well-specified models appear to fit the
observed data equally well – the ‘skinning the cat’ phenomenon of modelling tem-
perature time series.11

In terms of the series analysed throughout the paper, a clear findingpresents itself
for the two global temperature series. Irrespective of the model fitted, forecasts do
not contain any trend, with long-horizon forecasts being flat, albeit with rather large
measures of imprecision even frommodels in which uncertainty is bounded. This is a
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Figure 9: CET and forecasts

Monthly data, January 2011–December 2014. Forecasts per ‘multiplicative ARIMA plus
deterministic seasonal trends’ model out to December 2020 accompanied by 95%

forecast intervals.
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consequence of two interacting features of the fitted models: the inability to isolate
a significant drift or trend parameter and the large amount of overall noise in the
observations themselves compared to the fitted ‘signals’. Both of these featuresmake
forecasting global temperature series a necessarily uncertain exercise, but stochastic
models are at least able to accurately measure such uncertainty.

The regionalCET seriesdoes contain amodestwarming signal, theextentofwhich
has been shown to be dependent on the season: winters have tended to become
warmer, spring and autumn less so, and summers have shown hardly any trend in-
crease at all. The monthly pattern of temperatures through the year has remained
stable throughout the entire 355 years of the CET record.

The models considered in the report also have the ability to be updated as new
observations become available. At the time of writing, the HADCRUT4 observations
for thefirst fourmonths of 2015were 0.690, 0.660, 0.680 and0.655. Forecasts from the
ARIMA (0, 1, 3)model made at April 2015 are now 0.642 for May, 0.635 for June and
0.633 thereafter, up from the forecast of 0.582 made at December 2014. This uplift is
a consequence of the forecasts for the first four months of 2015, these being 0.588,
0.593, 0.582 and 0.582, underestimating the actual outturns, although the latter are
well inside the calculated forecast intervals.

What the analysis also demonstrates is that fitting a linear trend, say, to a pre-
selected portion of a temperature record, a familiar ploy in the literature, cannot ever
be justified.12 At best such trends can only be descriptive exercises, but if the series
is generated by a stochastic process then they are likely to be highly misleading, will
have incorrectmeasures of uncertainty attached to them andwill be completely use-
less for forecasting. There is simply no substitute for analysing the entire temperature
record using a variety of well-specified models.

It may be thought that including ‘predictor’ variables in the stochasticmodels will
improveboth forecasts and forecast uncertainty. Longexperience of forecastingnon-
stationary data in economics andfinance tells us that this is bynomeans agiven, even
though a detailed theory of such forecasting is available.13 Models in which ‘forcing’
variables have been included in this framework have been considered, with some
success, when used to explain observed behaviour of temperatures.14 Their use in
forecasting, where forecasts of the forcing variables are also required, has beenmuch
less investigated, however: indeed, the difficulty in identifying stable relationships
between temperatures andother forcingvariables suggests that analogousproblems
to those found in economics and finance may well present themselves here as well.

18



9 Appendix: Technical details on ARIMA analysis

The lag operator

In concisely expressing several of the specific forms that equation (1) can take, we
make use of the lag operator B, defined such that Bxt ≡ xt−1 , so that B j xt = xt− j

and B jc = c, where c is a constant.

The ARIMAmodel

The simplest form of the autoregressive-integrated-moving average (ARIMA) process
popularised by Box and Jenkins, and perhaps themost familiar of time seriesmodels,
sets μt = μ, so that the level component is constant, and defines the noise to be the
ARIMA (p,d ,q) process:

φ(B)∇dεt = θ (B)at (A1)

Here the innovation at is a white noise process such that E(at) = 0, E(a2
t ) = σ

2
a and

E(at−iat− j) = 0 for all i and j, i 6= j, where the notation E() denotes the theoretical
mean (expectation) of the argument. Hence at has zero mean, constant variance σ2

a
and zero autocovariances, so that it is uncorrelated with its past and, indeed, future
values. ∇ is the first-difference operator defined as ∇ = 1− B, so that, for example,

∇xt = (1− B)xt = xt − xt−1

and

φ(B) = 1−φ1B− . . . −φpBp

θ (B) = 1− θ1B− . . . − θqBq

are polynomials in B of orders p and q, known as the autoregressive and moving-
average operators respectively. Substituting (A1) into (1) gives

φ(B)∇d(xt −μ) = θ (B)at (A2)

so that the deviations of xt from its level follow an ARIMA process. If d > 0 then these
deviations are said to be stationary and, although xt will be autocorrelated, it will
always revert back to μ, which can then be regarded as themean of xt (an equivalent
terminology is that the deviations have only a ‘temporary’ influence on xt ). If d >
0 , typically 1 or possibly 2, then the deviations will be non-stationary and will not
revert to a constant level and the concept of xt having a mean is erroneous, for such
deviations from any ‘mean’ will have permanent effects. For example, if d = 1 then
(A2) becomes:
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φ(B)∇xt = φ(B)∇μ+ θ (B)at = θ (B)at

since∇μ = (1−B)μ = μ−μ = 0 . Thus the first differences of xt are stationary about
zero while the actual values can be expressed as:

xt =
θ (B)

φ(B)
∇−1at =ψ(B)

�
1+ B+ B2+ . . . + Bt

�
at = x0+ψ(B)

t−1∑

i=0

at−i (A3)

on putting ψ(B) = θ (B)/φ(B) , using the result that (1− B)−1 = 1+ B + B2 + . . . ,
and setting a0 = x0 and ai = 0 for i < 0. xt is thus given by its initial value x0 plus the
cumulated sum of (possibly correlated) innovations up to t . Ifφ(B) = θ (B) = 1 then
∇xt = at and

xt = xt−1+ at = x0+
t−1∑

i=0

at−i

which is the familiar representation of a (driftless) randomwalk. Similarly, for d = 2,

φ(B)∇2 xt = φ(B)∇
2μ+ θ (B)at = θ (B)at (A4)

since ∇2μ = ∇∇μ = 0. Here the second-differences, ∇2 xt = (1− B)2 xt = xt −
2xt−1+ xt−2 , are stationary about zero and, by a similar argument to that used above,
the first differences of xt will be non-stationary.

Suppose now that, rather than being constant, the level follows the linear trend
μt = β0+ β1 t , so that (A2) becomes

φ(B)∇d(xt − β0− β1 t) = θ (B)at (A5)

For d = 0 (A5) becomes

φ(B)xt = α0+α1 t + θ (B)at (A6)

where

α0 =

 

1−
p∑

i=1

φi

!

β0+

 
p∑

i=1

iφi

!

β1

α1 =

 

1−
p∑

i=1

φi

!

β1

so that xt evolves as stationary deviations about a linear trend. With d = 1 (A5) now
becomes

φ(B)∇(xt − β0− β1 t) = θ (B)at
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Since∇β0 = 0 and β1∇t = β1 this can be written as

φ(B)∇xt = φ(B)β1+ θ (B)at = α1+ θ (B)at (A7)

whereα1 = (1−φ1−. . .−φp)β1 = φ(1)β1. In terms of levelswe have xt = x0+β1 t+
εt , where φ(B)∇εt = θ (B)at , so that xt itself evolves as non-stationary deviations
about a linear trend emanating from the initial value x0. Equivalently, analogous to
(A3)

xt = x0+ β1 t +ψ(B)
t−1∑

i=1

at−i

Thus xt is given by the linear trend plus the cumulated sumof correlated innovations.
For d = 2 (A5) becomes

φ(B)∇2(xt − β0− β1 t) = θ (B)at (A8)

Since∇2β0 =∇∇β0 = 0 and

β1∇
2 t = β1 (1− B)2 t = β1

�
1− 2B+ B2

�
t = β1(t − 2(t − 1) + t − 2) = 0

this can be written as
∇2 xt = θ (B)at

which is again equation (A4). An equivalent form is ∇xt = β1 + εt , where again
φ(B)∇εt = θ (B)at , so that∇xt evolves as non-stationary deviations about an initial
level given by β1. The levels xt will then evolve through, possibly extended, periods
of increase and decrease but without following any overall trend.

Clearly for a warming trend to exist in this class of model the level function must
be increasing, thus requiring a process of the form (A7) with α1 > 0 to generate tem-
peratures.

Non-linear and breaking trendmodels

In these models the level is given by some deterministic, usually non-linear, function
of t , μt = f (t) , but they typically assume that the noise component εt is stationary,
so that xt evolves as stationary deviations about f (t). The non-linearity is designed
to capture a break or regime change and one function that has been used to cap-
ture such a shift in temperatures is the ‘smooth transition’, which employs the logistic
function15

St(γ,τ) = (1+ exp(−γ(t − τT )))−1

to define the level, which we may more naturally now call the trend function, as

μt = α1+ β1 t + (α2+ β2 t)St(γ,τ) (A9)
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The logistic changes smoothly and monotonically as t increases, so the trend func-
tion smoothly transitions from the regime defined by α1+β1 t to the regimeα2+β2 t .
The parameter τ determines the timing of the transition midpoint since, for γ > 0,
S−∞(γ,τ) = 0 , S∞(γ,τ) = 1 and SτT (γ,τ) = 0.5. The speed of the transition is de-
termined by γ: if this parameter is small then St(γ,τ)will take a long time to traverse
the interval from 0 to 1, the limiting case being γ = 0 , when St(γ,τ) = 0.5 for all t ,
so that

μt = α1+ 0.5α2+
�
β1+ 0.5β2

�
t

and there is just a single regime. For large values of γ, St(γ,τ) traverses the interval
very rapidly, and as γ approaches+∞ it changes instantaneously at time τT . If γ < 0
then the initial andfinal regimes are reversedbut the interpretationof theparameters
remains the same.

The smooth transition trendmodel has the appealing property that themidpoint
of the transition can be estimated, but only two regimes are allowed for in (A9), al-
though this may not be a problem as the transition can take some time, thus impart-
ing ‘smoothness’ to the trend.

Ifmore than two regimes are requiredbut continuity of the trend function is still to
be desired then a segmented linear trend may be considered. If there are m regimes
definedby thebreak-points T1, T2, . . . , Tm−1 then the segmented trend takes the form

μ1 = α1+ β1 t +
m∑

i=2

δiSt(i) (A10)

where

St(i) =

(
t − Ti−1 t > Ti−1

0 otherwise

Even though continuity is imposed, equation (A10) does not require a continuous first
derivative, so that the slope of the trend function evolves as a sequence of discrete
shifts β1, β1 + δ1, β1 + δ1 + δ2, etc., unlike the smooth transition. Extensions to al-
low for higher-order trend polynomials and, indeed, combinations of polynomials of
different orders, are straightforward if algebraically more complicated to express.

Of course, continuity of the trend function can be dispensed with, in which case
equation (A10) may be replaced by

μt = α1+ β1 t +
m∑

i=2

(αi + βi t)Dt(i) (A11)

where

Dt(i) =

(
1 Ti−1 ≤ t < Ti

0 otherwise
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Under the discontinuous segmented trend (A11), shocks to xt given by non-zero val-
ues of εt are usually transitory, in that xt will revert back to the trend line that it is
currently on, but occasionally permanent, when the shock shifts μt immediately onto
a new trend line.

Structural models

A structural model allows the level to be non-stationary, in its most general form tak-
ing the specification16

μt = μt−1+ βt−1+ vt (A12)

βt = βt−1+ wt

Thus the level follows a randomwalk with a slope (or drift) that also follows a random
walk. The errors vt and wt are independent zero-mean white noises with variances
σ2

v andσ
2
w respectively: ifσ2

w = 0 then the slope is constant, β say, whereas ifσ2
v = 0

changes to the level are entirely due to shifts in the slope. If both variances are zero
then the level becomes μt = μt−1 + β = μ0 + tβ , a linear trend. Substituting (A12)
into (A1) yields

∇2 xt = wt +∇vt +∇
2εt

the right-hand side of which can be written as the moving average at − θ1at−1 −
θ2at−2, albeit with some complicated restrictions imposed on θ1 and θ2: for example,
for the smooth trendmodel which has σ2

v = 0, θ1 = −4θ2/(1−θ2) and−1≤ θ2 ≤ 0.
The general structural model can thus be thought of as a restricted ARIMA (0, 2, 2)
process.

Seasonal extensions

The temperature series investigated so far are both ‘global’ and hence contain no sea-
sonal fluctuations. To deal with a regional temperature series, whose evolution will
necessarily include a seasonal fluctuation, the level and noise components of equa-
tion (1) need to be extended. Equation (A11) may be extended to:

μt = α1+ β1 t +
s∑

i=2

(α′i + β
′
i t)di(t) =

s∑

i=1

(αi + βi t)di(t) (A13)

Here s is the seasonal period: for temperatures recorded at quarterly intervals, s = 4,
while for monthly data, s = 12. The di(t) are seasonal ‘dummy’ variables defined as

di(t) =

(
1 if t = interval i

0 otherwise
i = 1, . . . , s
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In equation (A13) α′i = αi − α1 and βi = β
′
i − β1, i = 2, . . . , s, so that the first

expression gives the seasonal ‘factors’ as deviations from a reference value, taken for
convenience as the first observation of the year, e.g. the first quarter (typically ‘win-
ter’) if s = 4, January if s = 12. The level model thus allows for deterministic (linear)
seasonal trends and extensions to higher-order polynomials and breaking and seg-
mented seasonal trends are clearly possible if thought desirable.

A stochastic seasonal pattern can be introduced by extending the noise model
(A1) to become

φ(B)Φ(Bs)∇d∇D
s εt = θ (B)Θ(B

s)at (A14)

Here∇s = 1− Bs is the sth-difference operator and

Φ(Bs) = 1−Φ1Bs − . . .−ΦP BPs

Θ(Bs) = 1−Θ1Bs − . . . −ΘQBQs

are polynomials of order P and Q respectively in Bs. Equation (A14) is the multiplica-
tive seasonal ARIMAmodel, often denoted ARIMA (p, d, q)× (P, D,Q)s.

17

The structuralmodel can be extended to include a seasonal component such that
xt = μt + ψt + εt , where the level component is again given by (A12) and where
ψt =ψt−s+ωt ,ωt being awhite noise with varianceσ

2
ω
.18 The seasonal component

thus follows a seasonal random walk and the seasonal pattern is allowed to change
over time.

Forecasting ARIMA processes

To develop the properties of forecasts, suppose that we observe the set of observa-
tions (x1−d , x2−d , . . . , xT ) from a general ARIMA(p, d, q) process:

φ(B)∇d xt = θ0+ θ (B)at (A15)

How do we forecast a future value xT+h? If we let

α(B) = φ(B)∇d =
�

1−α1B−α2B2− . . . −αp+d Bp+d
�

(A15) becomes, for time T + h,

α(B)xT+h = θ0+ θ (B) aT+h

or, when written out fully,

xT+h = α1 xT+h−1+α2 xT+h−2+ . . . +αp+d xT+h−p−d

+ θ0+ aT+h− θ1aT+h−1− . . . − θqaT+h−q
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Clearly, observations from T + 1 onwards will be unavailable, but a minimum mean
square error (MMSE) forecast of xT+h made at time T , which we shall denote fT,h, is
given by the conditional expectation

fT,h = E
�
α1 xT+h−1+α2 xT+h−2+ . . . +αp+d xT+h−p−d

+ θ0− aT+h− θ1+ aT+h−1− . . . − θqaT+h−q|xT , xT−1, . . .
�

(A16)

Now

E
�

xT+ j|xT , xT−1, . . .
�
=

(
xT+ j, j ≤ 0

fT, j, j > 0

and

E
�

aT+ j|xT , xT−1, . . .
�
=

(
aT+ j, j ≤ 0

0, j > 0

so that, to evaluate fT,h, all we need to do is:

1. replace past expectations ( j < 0) by known values, xT+ j and aT+ j , and

2. replace future expectations ( j > 0) by forecast values fT, j and 0.

Three examples will illustrate the procedure. Consider first the AR(4) model
�

1−φ1B−φ2B2−φ3B3−φ4B4
�

xt = θ0+ at

so that α(B) =
�
1−φ1B−φ2B2−φ3B3−φ4B4

�
. Here

xT+h = φ1 xT+h−1+φ2 xT+h−2+φ3 xT+h−3+φ4 xT+h−4+ θ0+ aT+h

and hence, for h= 1, we have

fT,1 = φ1 xT +φ2 xT−1+φ3 xT−2+φ4 xT−3+ θ0

For h= 2, 3 and 4, we have, respectively,

fT,2 = φ1 fT,1+φ2 xT +φ3 xT−1+φ4 xT−2+ θ0

fT,3 = φ1 fT,2+φ2 fT,1+φ3 xT +φ4 xT−1+ θ0

fT,4 = φ1 fT,3+φ2 fT,2+φ3 fT,1+φ4 xT + θ0

and, for h> 4

fT,h = φ1 fT,h−1+φ2 fT,h−2+φ3 fT,h−3+φ4 fT,h−4+ θ0
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As the forecast horizon h→∞, it may be shown that, since xt is stationary

fT,h→
θ0

1−φ1−φ2−φ3−φ4

= E
�

xt

�
= μ

so that for long horizons the best forecast of a future observation is eventually the
mean of the process, although the trajectory of the forecasts towards this limit will
depend on the values taken by the autoregressive parameters.

Next consider the ARIMA (0, 1, 3)model∇xt =
�
1− θ1B− θ2B2− θ3B3

�
at . Here

α(B) = (1− B) and so

xT+h = xT+h−1+ aT+h− θ1aT+h−1− θ2aT+h−2− θ3aT+h−3

For h= 1 we have

fT,1 = xT − θ1aT − θ2aT−1− θ3aT−2

and for h= 2, 3

fT,2 = fT,1− θ2aT − θ3aT−1

fT,3 = fT,2− θ3aT

and for h> 3

fT,h = fT,h−1 = fT,3

Thus, after two initial ‘jumps’, for all horizons h > 2 , the forecasts from origin T will
follow a straight line parallel to the time axis and passing through fT,3. Clearly, if θ1 =
θ2 = θ3 = 0, xt follows a random walk and we have the well-known that result that
fT,h = xT : the optimal forecast of all future values of a random walk is the current
value.

Finally then, consider theARIMA (0, 2, 2)model∇2 xt =
�
1− θ1B− θ2B2

�
at , with

α(B) = (1− B)2 =
�
1− 2B+ B2

�
:

xT+h = 2xT+h−1− xT+h−2+ aT+h− θ1aT+h−1− θ2aT+h−2

For h= 1 we have

fT,1 = 2xT − xT−1− θ1aT − θ2aT−1
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for h= 2

fT,2 = 2 fT,1− xT − θ1aT

for h= 3

fT,3 = 2 fT,2− fT,1

and thus for h≥ 3

fT,h = 2 fT,h−1− fT,h−2

Hence, for all horizons, the forecasts from origin T will follow a straight line passing
through the forecasts fT,1 and fT,2 and these will determine the slope of the line.

Forecast errors

The h-step ahead forecast error for origin T is

eT,h = xT+h− fT,h = aT+h+ψ1aT+h−1+ . . . +ψh−1aT+1

whereψ1, . . . ,ψh−1 are the first h−1ψ-weights inψ(B) = α−1(B)θ (B). The forecast
error is therefore a linear combination of the unobservable future shocks entering the
system after time T and, in particular, the one-step ahead forecast error will be

eT,1 = xT+1− fT,1 = aT+1

Thus, for a MMSE forecast, the one-step ahead forecast errors must be uncorrelated.
However, it may be shown that h-step ahead forecasts made at different origins will
not be uncorrelated, and neither will be forecasts for different lead timesmade at the
same origin. The variance of the forecast error eT,h is then

V
�

eT,h

�
= σ2

1

�
1+ψ2

1+ψ
2
2+ . . .+ψ2

h−1

�
(A17)

Toobtain theψ-weights for theAR(4)model, wehave toequate coefficientsofpowers
of B in the expression α(B)φ(B) = 1 , leading to

ψ1 = φ1

ψ2 =ψ1φ1+φ2 = φ
2
1 +φ2

ψ3 =ψ2φ1+ψ1φ2+φ3 = φ
3
1 + 2φ1φ2+φ3

ψ4 = φ3φ1+ψ2φ2+ψ1φ3+φ4
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and, for h> 4,

ψh =ψh−1φ1+ψh−2φ2+ψh−3φ3+ψh−4φ4

Since we are assuming stationarity, these ‘ψ-weights’ may be shown to get progres-
sively smaller so that, consequently, V

�
eT,h

�
converges to a finite value, which is the

variance of the process about the ultimate forecast μ. Thus, as the forecast horizon h
becomes longer, forecasts from any stationary process converge to the mean of xt ,
with the forecast error variance eventually being bounded by the actual variance of
the series.

For the ARIMA (0, 1, 3)model an analogous procedure obtainsψ1 = 1−θ1,ψ2 =
1− θ1− θ2 andψ j = 1− θ1− θ2− θ3 for j > 2. Thus we have

V
�

eT,h

�
= σ2

a

�
1+
�
1− θ1

�2
+
�
1− θ1− θ2

�2
+ (h− 2)

�
1− θ1− θ2− θ3

�2
�

which increases linearlywith hand socannot converge toafinite value. Consequently,
the longer the forecast horizon h the greater the forecast error variance and themore
imprecise forecasts necessarily become. Similarly, the ARIMA (0, 2, 2) model has ψ-
weights given by ψ j = 1+ θ2 + j(1− θ1 − θ2) , j = 1, 2, . . . , and an h-step ahead
forecast error variance of

V
�

eT,h

�
= σ2

a

�
1+ (h− 1)

�
1+ θ2

�2
+ 1

6
h(h− 1) (2h− 1)

�
1− θ1− θ2

�2

+ h(h− 1)
�
1+ θ2

��
1− θ1− θ2

��

which again increases with h but, since cubes of h are involved, potentially more
rapidly than the ARIMA process with d = 1.

These examples thus showhowthedegreeof differencing (equivalently, theorder
of integration) determinesnotonlyhowsuccessive forecasts are related toeachother,
but also the behaviour of the associated error variances.

Model selection

There are two generally-usedmethods of selecting an appropriate ARIMA process for
modelling a time series. The first is the traditional three-stage approach of Box and
Jenkins, that of identification, estimation and diagnostic checking. The initial identi-
fication stage requires the examination of the sample autocorrelation and partial au-
tocorrelation functions for various differences of the series and then selecting a small
group of models, possibly just the one, whose theoretical autocorrelation and partial
autocorrelation functions most closely resemble those from the sample. These mod-
els are then estimated, typically by least squares, and then subjected to diagnostic
checking to assess their adequacy, in the sense of whether the residuals satisfactorily
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‘mimic’ the white noise assumption made for the innovations. The three stages may
be iterated until a satisfactory model is obtained.

The second method is to fit a range of models and select that which minimises
an information criterion, a statistic that trades off goodness of fit against model com-
plexity, in the sense thatmodels containingmoreestimatedparameters arepenalised
more heavily.

In practice these twomethods are often combined and this is the approach taken
here, with identification leading to a, hopefully small, set of potential models. These
are then estimated and thepreferredmodel selected on thebasis of both information
criteria and adequacy of fit. Extensions to models other than the ARIMA class are
straightforward.
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Notes

1. See Mills (2011, 2013a) for the historical development of time series analysis and Mills
(2015a) for a collection of the key early papers in the subject.

2. Box and Jenkins (1970): for an appreciation of the impact of this book on time series anal-
ysis, see Mills, Tsay and Young (2011).

3. Sir Arthur Schuster investigated periodicities in earthquake frequencies and sunspot activ-
ity, while Udny Yule and Gilbert Walker, after whom the conventional method of estimating
autoregressions was named, used sunspot and air pressure data to illustrate their techniques:
see Mills (2011, chapters 3 and 6).

4. See, for example, Gay-Garcia et al (2009), Kaufmann et al (2010), Mills (2006, 2007, 2009a,
2010a, 2010b, 2012a, 2012b, 2013b) and Stern and Kaufmann (2000).

5. The HADCRUT4 and CET series are both maintained by the UK Met Office’s Hadley Centre
for Climate Change (the former jointlywith the Climatic ResearchUnit at theUniversity of East
Anglia) and are available from theMet Office website. The RSS series is available from the Na-
tional Space Science & Technology Centre website at the University of Alabama at Huntsville.

6. Because the emphasis in this report is on forecasting in discrete time, continuous time
frameworks, which are often used to construct theoretical models of the climate, are not con-
sidered.

7. Statisticians define the variance as the mean of the squared deviations about the mean; its
square root is known as the standard deviation.

8. While the models fitted to the various temperature series are illustrative of the model
classes available, they have been selected so that they are free of obvious misspecifications.
Moreover they have all been fitted by commercially available software: apart from the struc-
tural models, whichwere estimated using the STAMPmodule of OXMETRICS 7, all othermod-
els were estimated using ECONOMETRIC VIEWS (EVIEWS) 8. Thus all the models may be read-
ily replicated and no doubt improved upon. For an introductory treatment of ARIMA model
identification see Mills (2015b).

9. The break-points were determined ‘exogenously’, in other words by visual examination of
a plot of the series. This was done for two related reasons. First, methods for determining
breaks endogenously remain in a relatively early stage of development (see Bai, 1997; Bai and
Perron, 1998, 2003,McKitrick andVogelsang 2014) and their properties in dynamic regression
models have not been completely established. Second, these methods require observations
to be ‘trimmed’ from the beginning and end of the sample to ensure that the tests have rea-
sonable properties: any trimming at the end of the sample will make it almost impossible to
find a break that occurs near the end of the sample, as may well have happened in this series,
this being the well documented ‘pause’ or ‘hiatus’ in temperatures. Consequently, other re-
searchersmaywish to explore alternative break points: certainly bringing the last break point
forwards from December 2001 will begin to produce a significant positive trend for the fifth
regime.

10. This model can be slightly improved by incorporating an autoregressive conditionally
heteroskedastic (ARCH), rather than white noise, innovation into the noise component. Little
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change to the coefficient estimates is found, however, and so this additional complication is
avoided in the presentation here.
11. As coined by Mills (2010a).
12. Two recent and particularly egregious examples are Karl et al (2015) and Lewandowsky et
al. (2015).
13. See Clements and Hendry (1999).
14. See, for example, Mills (2009b).
15. See Harvey and Mills (2001, 2002).
16. See, for example, Harvey (1989).
17. This model was originally introduced by Box and Jenkins (1970). Methods of identifying
models with the general structure of (A13) and (A14) and of testing for the presence of deter-
ministic and stochastic seasonality are discussed in Pierce (1978) and Mills and Mills (1992).
18. See Harvey and Todd (1983).
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